1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
state_df <- get_estimates(geography = "state", product = "population", vintage = 2023, geometry = TRUE, keep_geo_vars = TRUE) |> filter(variable == "POPESTIMATE") |> tigris::shift_geometry() #> Using the Vintage 2023 Population Estimates state_df |> select(STUSPS, variable, value) |> arrange(desc(value)) #> Simple feature collection with 52 features and 3 fields #> Geometry type: MULTIPOLYGON #> Dimension: XY #> Bounding box: xmin: -3111747 ymin: -1697746 xmax: 2258200 ymax: 1565782 #> Projected CRS: USA_Contiguous_Albers_Equal_Area_Conic #> # A tibble: 52 × 4 #> STUSPS variable value geometry #> <chr> <chr> <dbl> <MULTIPOLYGON [m]> #> 1 CA POPESTIMATE 38965193 (((-2066923 -203083.1, -2066434 -203272.1, -2065390 -203998.6, -2064847 -203983.1, -... #> 2 TX POPESTIMATE 30503301 (((123936.1 -866655.9, 124036.5 -866293.1, 124101.4 -866136.8, 124302.4 -866192.1, 1... #> 3 FL POPESTIMATE 22610726 (((1539355 -1253701, 1539399 -1253591, 1539568 -1253573, 1539645 -1253677, 1539670 -... #> 4 NY POPESTIMATE 19571216 (((1971370 670201.1, 1971466 670819.8, 1971674 671037.9, 1971705 671652.5, 1971826 6... #> 5 PA POPESTIMATE 12961683 (((1287712 486864, 1287647 487393.7, 1287516 488466, 1286933 492035.5, 1286933 49203... #> 6 IL POPESTIMATE 12549689 (((378605.4 309417.4, 378724.8 310290.3, 378839.6 310581.1, 379159 311074.9, 379230.... #> 7 OH POPESTIMATE 11785935 (((1093937 536238.6, 1094689 536961.2, 1094790 537429.3, 1094700 537846.3, 1095036 5... #> 8 GA POPESTIMATE 11029227 (((1390722 -584139.2, 1390875 -583744.3, 1391189 -583636.6, 1391495 -583725.5, 13914... #> 9 NC POPESTIMATE 10835491 (((1799008 17387.01, 1799662 17972.25, 1800801 18183.4, 1802098 18181.65, 1802610 17... #> 10 MI POPESTIMATE 10037261 (((1049981 578947.1, 1050107 579034, 1050201 578927.1, 1050205 578748.4, 1050058 578... #> # ℹ 42 more rows